Performance Monitoring

Test different dataset sizes and monitor performance

Large Dataset Demo
Debug Info
Tree: performance-large-dataset Data: 419 Expand level: 1 Nodes: 0 Levels: 0 Dragging: none
Performance Controls
Metrics

Performance Metrics

Render Time: 0ms
Search Time: 0ms
Items: 419

Performance Impact

  • Expand Level: Higher = slower initial render
  • Batch Size: Smaller = smoother UI
  • Timeout: Higher = less blocking
  • Sorting: Complex sorts slow down rendering

Last Updated

Not yet

Optimization Techniques

Best practices for large datasets and smooth performance

Optimization Tips
Limit Expand Level
High Impact

Keep expandLevel low (1-2) for large datasets

expandLevel={1}
Optimize Batch Size
Medium Impact

Smaller batches for better responsiveness

indexerBatchSize={10}
Increase Timeout
Medium Impact

Higher timeout prevents UI blocking

indexerTimeout={100}
Minimize DOM Updates
High Impact

Use stable keys and avoid unnecessary re-renders

key={item.id}
Debounce Search
Medium Impact

Add delay to search input to reduce queries

debounce(search, 300)
Implementation
Performance Configuration
 
Guidelines

Performance Guidelines

  • Small datasets (<100): All optimizations optional
  • Medium datasets (100-1000): Limit expand level, optimize batching
  • Large datasets (>1000): All optimizations recommended
  • Huge datasets (>10000): Consider virtual scrolling

Memory Management

  • Avoid deep object nesting in data
  • Use string IDs instead of numbers when possible
  • Clean up event listeners
  • Implement data pagination for huge datasets

Browser Limits

Most browsers handle 1000-5000 DOM nodes well. Beyond that, consider virtualization or pagination.

Performance Benchmarking

Measure and compare performance across different configurations

Benchmark Results
Expected Performance (Desktop)
Dataset SizeRender TimeSearch TimeMemory Usage
100 items< 10ms< 1ms~1MB
500 items< 50ms< 5ms~3MB
1000 items< 100ms< 10ms~5MB
5000 items< 500ms< 50ms~20MB
Results may vary based on device performance and browser
Benchmark Code
Benchmarking Code
 
Analysis

Benchmark Categories

  • Data Generation: Time to create dataset
  • Initial Render: First paint time
  • Search Performance: Query execution time
  • Memory Usage: Heap size consumption

Performance Targets

  • Initial render: < 100ms
  • Search queries: < 50ms
  • Interactions: < 16ms (60 FPS)
  • Memory growth: Linear with data size

Browser Tools

Use browser DevTools Performance tab to profile real-world usage patterns.

Next Steps

📊
Data Structure

Optimize your data for better performance

Data Guide
🔍
Search Optimization

Advanced search and filtering techniques

Search Examples
📚
API Reference

Complete component documentation

API Docs